This study was aimed at extracting, characterizing, and exploring the detoxification activity of the peptide-containing polysaccharide from Agaricus balchaschensis. An anion adsorption fraction was acquired through hot water extraction. Its structure was analyzed, and the potential protective effect against cadmium-intoxicated mice was explored. Structural analysis revealed that the principal component of the peptide-containing polysaccharide of A. balchaschensis (ABPCP) is polysaccharide, which consists of glucose, mannose, galactose, and xylose, containing (1 → 4)-linked α-D-glucan, (1 → 3)-linked β-D-Glcp, (1 → 4)-linked β-D-Glcp, (1 → 6)-linked β-D-Glcp, (1 → 6)-linked β-D-Manp, (1 → 3)-linked β-D-Galp, (1 → 6)-linked β-D-Galp, and (1 → 4)-linked β-D-xylan. The amino acid content of ABPCP is 11.747 mg/g. Threonine, serine, glutamate, glycine, alanine, cysteine, valine, methionine, lysine, and arginine were detected in ABPCP, among which the content of glutamate was the highest. The alleviating effect of ABPCP on cadmium poisoning in mice was investigated. ABPCP significantly reduced the cadmium content in serum and the heart, kidneys, and liver, which indicates that ABPCP could promote cadmium discharge. ABPCP also significantly decreased serum nitric oxide, endothelin-1, urea, uric acid, and serum creatinine, alleviating kidney and liver damage caused by cadmium. All these results manifest that ABPCP can lower the cadmium content in organs and alleviate the damage to kidneys and livers damaged by Cd.
Loading....